use bytes::{BigEndian, ByteOrder, BufMut}; use std::error::Error as ErrorTrait; use std::fmt::{Display, Formatter, Result as FmtResult}; use std::io::{Cursor, Error as IoError, ErrorKind, Result as IoResult, Write, Seek, SeekFrom}; pub const EBML_HEAD_ID: u64 = 0x0A45DFA3; pub const DOC_TYPE_ID: u64 = 0x0282; pub const VOID_ID: u64 = 0x6C; #[derive(Debug, PartialEq)] pub enum Error { CorruptVarint, UnknownElementId, UnknownElementLength, CorruptPayload, } #[derive(Debug, PartialEq)] pub enum WriteError { OutOfRange } impl Display for WriteError { fn fmt(&self, f: &mut Formatter) -> FmtResult { match self { &WriteError::OutOfRange => write!(f, "EBML Varint out of range") } } } impl ErrorTrait for WriteError { fn description(&self) -> &str { match self { &WriteError::OutOfRange => "EBML Varint out of range" } } } #[derive(Debug, PartialEq)] pub enum Varint { /// a numeric value Value(u64), /// the reserved "unknown" value Unknown } /// Try to parse an EBML varint at the start of the given slice. /// Returns an Err() if the format is corrupt. /// Returns Ok(None) if more bytes are needed to get a result. /// Returns Ok(Some((varint, size))) to return a varint value and /// the size of the parsed varint. pub fn decode_varint(bytes: &[u8]) -> Result, Error> { let mut value: u64 = 0; let mut value_length = 1; let mut mask: u8 = 0x80; let mut unknown_marker: u64 = !0; if bytes.len() == 0 { return Ok(None) } // get length marker bit from first byte & parse first byte while mask > 0 { if (mask & bytes[0]) != 0 { value = (bytes[0] & !mask) as u64; unknown_marker = (mask - 1) as u64; break } value_length += 1; mask = mask >> 1; } if mask == 0 { return Err(Error::CorruptVarint) } // check we have enough data to parse if value_length > bytes.len() { return Ok(None) } // decode remaining bytes for i in 1..value_length { value = (value << 8) + (bytes[i] as u64); unknown_marker = (unknown_marker << 8) + 0xFF; } // determine result if value == unknown_marker { Ok(Some((Varint::Unknown, value_length))) } else { Ok(Some((Varint::Value(value), value_length))) } } /// Try to parse an EBML element header at the start of the given slice. /// Returns an Err() if the format is corrupt. /// Returns Ok(None) if more bytes are needed to get a result. /// Returns Ok(Some((id, varint, size))) to return the element id, /// the size of the payload, and the size of the parsed header. pub fn decode_tag(bytes: &[u8]) -> Result, Error> { // parse element ID match decode_varint(bytes) { Ok(None) => Ok(None), Err(err) => Err(err), Ok(Some((Varint::Unknown, _))) => Err(Error::UnknownElementId), Ok(Some((Varint::Value(element_id), id_size))) => { // parse payload size match decode_varint(&bytes[id_size..]) { Ok(None) => Ok(None), Err(err) => Err(err), Ok(Some((element_length, length_size))) => Ok(Some(( element_id, element_length, id_size + length_size ))) } } } } pub fn decode_uint(bytes: &[u8]) -> Result { if bytes.len() < 1 || bytes.len() > 8 { return Err(Error::CorruptPayload); } Ok(BigEndian::read_uint(bytes, bytes.len())) } const SMALL_FLAG: u64 = 0x80; const EIGHT_FLAG: u64 = 0x01 << (8*7); const EIGHT_MAX: u64 = EIGHT_FLAG - 2; /// Tries to write an EBML varint using minimal space pub fn encode_varint(varint: Varint, output: &mut T) -> IoResult { let (size, number) = match varint { Varint::Unknown => (1, 0xFF), Varint::Value(too_big) if too_big > EIGHT_MAX => { return Err(IoError::new(ErrorKind::InvalidInput, WriteError::OutOfRange)) }, Varint::Value(value) => { let mut flag = SMALL_FLAG; let mut size = 1; // flag bit - 1 = UNKNOWN representation once OR'd with the flag; // if we're less than that, we can OR with the flag bit to get a valid Varint while value >= (flag - 1) { // right shift length bit by 1 to indicate adding a new byte; // left shift by 8 because there's a new byte at the end flag = flag << (8 - 1); size += 1; }; (size, flag | value) } }; let mut buffer = Cursor::new([0; 8]); buffer.put_uint::(number, size); return output.write_all(&buffer.get_ref()[..size]).map(|()| size); } const FOUR_FLAG: u64 = 0x10 << (8*3); const FOUR_MAX: u64 = FOUR_FLAG - 2; // tries to write a varint with a fixed 4-byte representation pub fn encode_varint_4(varint: Varint, output: &mut T) -> IoResult { let number = match varint { Varint::Unknown => FOUR_FLAG | (FOUR_FLAG - 1), Varint::Value(too_big) if too_big > FOUR_MAX => { return Err(IoError::new(ErrorKind::InvalidInput, WriteError::OutOfRange)) }, Varint::Value(value) => FOUR_FLAG | value }; let mut buffer = Cursor::new([0; 4]); buffer.put_u32::(number as u32); return output.write_all(&buffer.get_ref()[..]).map(|()| 4); } pub fn encode_element IoResult, X>(tag: u64, output: &mut T, content: F) -> IoResult<()> { encode_varint(Varint::Value(tag), output)?; encode_varint_4(Varint::Unknown, output)?; let start = output.seek(SeekFrom::Current(0))?; content(output)?; let end = output.seek(SeekFrom::Current(0))?; output.seek(SeekFrom::Start(start - 4))?; encode_varint_4(Varint::Value(end - start), output)?; output.seek(SeekFrom::Start(end))?; Ok(()) } pub fn encode_tag_header(tag: u64, size: Varint, output: &mut T) -> IoResult<()> { encode_varint(Varint::Value(tag), output)?; encode_varint(size, output)?; Ok(()) } /// Tries to write a simple EBML tag with a string value pub fn encode_string(tag: u64, string: &str, output: &mut T) -> IoResult<()> { encode_tag_header(tag, Varint::Value(string.len() as u64), output)?; output.write_all(string.as_ref()).map(|()| string.len())?; Ok(()) } #[derive(Debug, PartialEq)] pub struct Ebml(pub S, pub T); pub trait Schema<'a> { type Element: 'a; fn should_unwrap(&self, element_id: u64) -> bool; fn decode<'b: 'a>(&self, element_id: u64, bytes: &'b[u8]) -> Result; fn decode_element<'b: 'a>(&self, bytes: &'b[u8]) -> Result, Error> { match decode_tag(bytes) { Ok(None) => Ok(None), Err(err) => Err(err), Ok(Some((element_id, payload_size_tag, tag_size))) => { let should_unwrap = self.should_unwrap(element_id); let payload_size = match (should_unwrap, payload_size_tag) { (true, _) => 0, (false, Varint::Unknown) => return Err(Error::UnknownElementLength), (false, Varint::Value(size)) => size as usize }; let element_size = tag_size + payload_size; if element_size > bytes.len() { // need to read more still return Ok(None); } match self.decode(element_id, &bytes[tag_size..element_size]) { Ok(element) => Ok(Some((element, element_size))), Err(error) => Err(error) } } } } fn parse(self, source: T) -> Ebml where Self: Sized { Ebml(self, source) } } #[cfg(test)] mod tests { use bytes::{BytesMut}; use ebml::*; use ebml::Error::{CorruptVarint, UnknownElementId}; use ebml::Varint::{Unknown, Value}; use std::io::Cursor; use tests::TEST_FILE; #[test] fn fail_corrupted_varints() { assert_eq!(decode_varint(&[0]), Err(CorruptVarint)); assert_eq!(decode_varint(&[0, 0, 0]), Err(CorruptVarint)); } #[test] fn incomplete_varints() { assert_eq!(decode_varint(&[]), Ok(None)); assert_eq!(decode_varint(&[0x40]), Ok(None)); assert_eq!(decode_varint(&[0x01, 0, 0]), Ok(None)); } #[test] fn parse_varints() { assert_eq!(decode_varint(&[0xFF]), Ok(Some((Unknown, 1)))); assert_eq!(decode_varint(&[0x7F, 0xFF]), Ok(Some((Unknown, 2)))); assert_eq!(decode_varint(&[0x80]), Ok(Some((Value(0), 1)))); assert_eq!(decode_varint(&[0x81]), Ok(Some((Value(1), 1)))); assert_eq!(decode_varint(&[0x40, 52]), Ok(Some((Value(52), 2)))); // test extra data in buffer assert_eq!(decode_varint(&[0x83, 0x11]), Ok(Some((Value(3), 1)))); } #[test] fn encode_varints() { let mut buffer = BytesMut::with_capacity(10).writer(); let mut no_space = Cursor::new([0; 0]).writer(); assert_eq!(no_space.get_ref().remaining_mut(), 0); let mut six_buffer = Cursor::new([0; 6]).writer(); assert_eq!(six_buffer.get_ref().remaining_mut(), 6); // 1 byte assert_eq!(encode_varint(Varint::Unknown, &mut buffer).unwrap(), 1); assert_eq!(buffer.get_mut().split_to(1), &[0xFF].as_ref()); assert_eq!(encode_varint(Varint::Unknown, &mut no_space).unwrap_err().kind(), ErrorKind::WriteZero); assert_eq!(encode_varint(Varint::Value(0), &mut buffer).unwrap(), 1); assert_eq!(buffer.get_mut().split_to(1), &[0x80 | 0].as_ref()); assert_eq!(encode_varint(Varint::Value(0), &mut no_space).unwrap_err().kind(), ErrorKind::WriteZero); assert_eq!(encode_varint(Varint::Value(1), &mut buffer).unwrap(), 1); assert_eq!(buffer.get_mut().split_to(1), &[0x80 | 1].as_ref()); assert_eq!(encode_varint(Varint::Value(1), &mut no_space).unwrap_err().kind(), ErrorKind::WriteZero); assert_eq!(encode_varint(Varint::Value(126), &mut buffer).unwrap(), 1); assert_eq!(buffer.get_mut().split_to(1), &[0xF0 | 126].as_ref()); assert_eq!(encode_varint(Varint::Value(126), &mut no_space).unwrap_err().kind(), ErrorKind::WriteZero); // 2 bytes assert_eq!(encode_varint(Varint::Value(127), &mut buffer).unwrap(), 2); assert_eq!(&buffer.get_mut().split_to(2), &[0x40, 127].as_ref()); assert_eq!(encode_varint(Varint::Value(127), &mut no_space).unwrap_err().kind(), ErrorKind::WriteZero); assert_eq!(encode_varint(Varint::Value(128), &mut buffer).unwrap(), 2); assert_eq!(&buffer.get_mut().split_to(2), &[0x40, 128].as_ref()); assert_eq!(encode_varint(Varint::Value(128), &mut no_space).unwrap_err().kind(), ErrorKind::WriteZero); // 6 bytes assert_eq!(six_buffer.get_ref().remaining_mut(), 6); assert_eq!(encode_varint(Varint::Value(0x03FFFFFFFFFE), &mut six_buffer).unwrap(), 6); assert_eq!(six_buffer.get_ref().remaining_mut(), 0); assert_eq!(&six_buffer.get_ref().get_ref(), &[0x07, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE].as_ref()); six_buffer = Cursor::new([0; 6]).writer(); // 7 bytes assert_eq!(encode_varint(Varint::Value(0x03FFFFFFFFFF), &mut buffer).unwrap(), 7); assert_eq!(&buffer.get_mut().split_to(7), &[0x02, 0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF].as_ref()); assert_eq!(encode_varint(Varint::Value(0x01000000000000), &mut buffer).unwrap(), 7); assert_eq!(&buffer.get_mut().split_to(7), &[0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00].as_ref()); assert_eq!(encode_varint(Varint::Value(0x01FFFFFFFFFFFE), &mut buffer).unwrap(), 7); assert_eq!(&buffer.get_mut().split_to(7), &[0x03, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE].as_ref()); assert_eq!(encode_varint(Varint::Value(0x01FFFFFFFFFFFE), &mut no_space).unwrap_err().kind(), ErrorKind::WriteZero); assert_eq!(encode_varint(Varint::Value(0x01FFFFFFFFFFFE), &mut six_buffer).unwrap_err().kind(), ErrorKind::WriteZero); // 8 bytes assert_eq!(encode_varint(Varint::Value(0x01FFFFFFFFFFFF), &mut buffer).unwrap(), 8); assert_eq!(&buffer.get_mut().split_to(8), &[0x01, 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF].as_ref()); assert_eq!(encode_varint(Varint::Value(0xFFFFFFFFFFFFFE), &mut buffer).unwrap(), 8); assert_eq!(&buffer.get_mut().split_to(8), &[0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE].as_ref()); assert_eq!(encode_varint(Varint::Value(0xFFFFFFFFFFFFFF), &mut buffer).unwrap_err().kind(), ErrorKind::InvalidInput); assert_eq!(encode_varint(Varint::Value(u64::max_value()), &mut buffer).unwrap_err().kind(), ErrorKind::InvalidInput); } #[test] fn fail_corrupted_tags() { assert_eq!(decode_tag(&[0]), Err(CorruptVarint)); assert_eq!(decode_tag(&[0x80, 0]), Err(CorruptVarint)); assert_eq!(decode_tag(&[0xFF, 0x80]), Err(UnknownElementId)); assert_eq!(decode_tag(&[0x7F, 0xFF, 0x40, 0]), Err(UnknownElementId)); } #[test] fn incomplete_tags() { assert_eq!(decode_tag(&[]), Ok(None)); assert_eq!(decode_tag(&[0x80]), Ok(None)); assert_eq!(decode_tag(&[0x40, 0, 0x40]), Ok(None)); } #[test] fn parse_tags() { assert_eq!(decode_tag(&[0x80, 0x80]), Ok(Some((0, Value(0), 2)))); assert_eq!(decode_tag(&[0x81, 0x85]), Ok(Some((1, Value(5), 2)))); assert_eq!(decode_tag(&[0x80, 0xFF]), Ok(Some((0, Unknown, 2)))); assert_eq!(decode_tag(&[0x80, 0x7F, 0xFF]), Ok(Some((0, Unknown, 3)))); assert_eq!(decode_tag(&[0x85, 0x40, 52]), Ok(Some((5, Value(52), 3)))); } #[test] fn bad_uints() { assert_eq!(decode_uint(&[]), Err(Error::CorruptPayload)); assert_eq!(decode_uint(&[0; 9]), Err(Error::CorruptPayload)); } #[test] fn parse_uints() { assert_eq!(decode_uint(&[0]), Ok(0)); assert_eq!(decode_uint(&[0; 8]), Ok(0)); assert_eq!(decode_uint(&[1]), Ok(1)); assert_eq!(decode_uint(&[0,0,0,0,0,0,0,1]), Ok(1)); assert_eq!(decode_uint(&[38]), Ok(38)); assert_eq!(decode_uint(&[0,0,0,0,0,0,0,38]), Ok(38)); assert_eq!(decode_uint(&[0x7F,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF]), Ok(9223372036854775807)); assert_eq!(decode_uint(&[0x80,0,0,0,0,0,0,0]), Ok(9223372036854775808)); assert_eq!(decode_uint(&[0x80,0,0,0,0,0,0,1]), Ok(9223372036854775809)); } struct Dummy; #[derive(Debug, PartialEq)] struct GenericElement(u64, usize); impl<'a> Schema<'a> for Dummy { type Element = GenericElement; fn should_unwrap(&self, element_id: u64) -> bool { match element_id { _ => false } } fn decode<'b: 'a>(&self, element_id: u64, bytes: &'b[u8]) -> Result { match element_id { _ => Ok(GenericElement(element_id, bytes.len())) } } } #[test] fn decode_sanity_test() { let decoded = Dummy.decode_element(TEST_FILE); assert_eq!(decoded, Ok(Some((GenericElement(0x0A45DFA3, 31), 43)))); } }